

Modulbeschreibungen

Bachelor-Studiengang

Biopharmaceutical Science

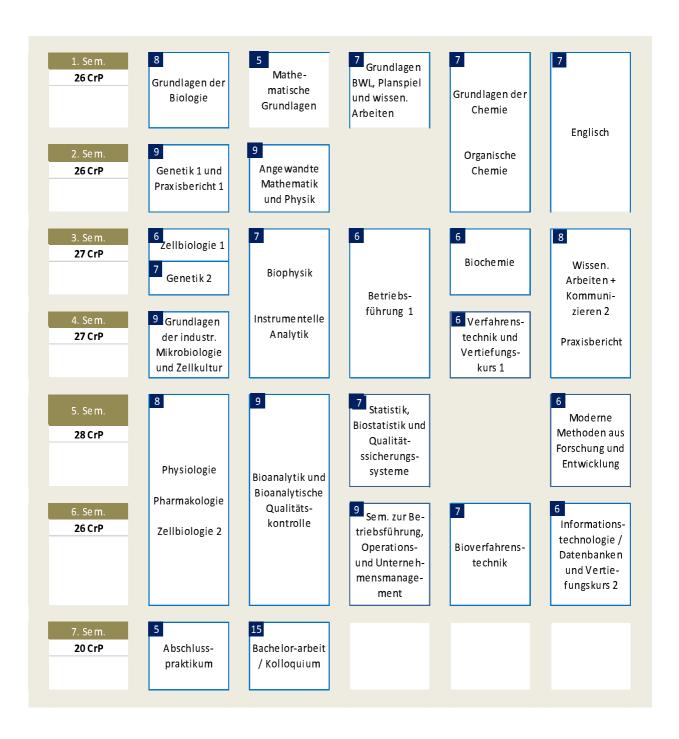
ab Wintersemester 2020/2021

Version: 2020.0

Erstellt							
Name	Kirstin Hebenbrock						
Datum	20.09.2020						

Geprüft						
Name	Sylvia Deyl					
Datum	22.09.2020					

Freigegeben							
Name Thomas Bayer							
Datum	29.09.2020						



Inhalt

Modulübersicht	3
Grundlagen der Biologie	4
Mathematische Grundlagen	5
Englisch	6
Grundlagen BWL, Planspiel und wissenschaftliches Arbeiten	7
Grundlagen der Chemie	8
Angewandte Mathematik und Physik	9
Genetik 1 und Praxisbericht 1	10
Biochemie	11
Zellbiologie 1	12
Genetik 2	13
Betriebsführung 1	14
Biophysik und Analytik	15
Wissenschaftliches Arbeiten und Kommunizieren 2	16
Grundlagen der industriellen Mikrobiologie und Zellkultur	17
Verfahrenstechnik und Vertiefungskurs 1	18
Statistik, Biostatistik und Qualitätssicherungssysteme	19
Bioanalytik und Bioanalytische Qualitätskontrolle	20
Moderne Methoden aus Forschung und Entwicklung	21
Physiologie und Pharmakologie, Zellbiologie 2	22
Informationstechnologie und Datenbanken, Vertiefungskurs 2	23
Betriebsführung 2	24
Bioverfahrenstechnik	25
Abschlusspraktikum	26
Anfertigen der Bachelor-Thesis	27
Vertiefung Strategien der Wirkstofffindung	28
Vertiefung Immunologie	29
Vertiefung Toxikologie	30
Vertiefung Neurobiologie	31
Vertiefung Hämostase	32

Modulübersicht

Grundlagen der Biologie											
Kennnummer	Workload	Credits	Studien- semester	Häufigkeit des Angebots			Dauer				
GB	208 h	8	1. Sem.	1 mal jährlich			1 Semester				
Lehrveranstaltung	en	•	Kontaktzeit		Selbst-	Ge	olante				
a) Grundla	gen der Biologie)	20 h		studium	Gru	ıppengröße				
b) Biologisches Grundpraktikum			104 h		32 h	25	Studierende				
c) Praxisbe	ericht (WAB)				52 h						

Nach dem Studium des Moduls sind die Studierenden in der Lage,

- Die Bedeutung der nachfolgenden Module des Studiums einzuschätzen
- Den Stand ihres für das Studium notwendige biologische Vorwissen zu erkennen und ggf. zu beheben
- Biologische Vorgänge zu beobachten

Inhalte

- a) Überblick über Aufbau und Funktion der Lebewesen, Prinzipien der Biologie (wie Regulation und Evolution), Aufbau und Funktion der Zelle, Wachstum und Teilung von Zellen, Selbstorganisation von Zellen, Zellen und Organismen als Produzenten. Einführung in Regularien, die die Forschung, Entwicklung und Produktion von Makromolekülen tangieren.
- b) Training der Beobachtungsgabe, Einführung in biologische Grundtechniken. Bewegung bei Amöben, Ermittlung von Zellgröße (Oberfläche und Volumen) pflanzlicher Zellen und deren Organellen, Lokalisierung von DNA, RNA und Stärke in Zellen, Vermehrung von Zellen, Darstellung von Mitosestadien.
- c) Berufspraxis für Praxisbericht (Abgabe 2. Semester, Siehe Modul GENWA)

Lehrformen

- a) seminaristischer Unterricht, Gruppenarbeiten
- b) Laborpraktikum

Teilnahmevoraussetzungen

Formal: keine

Inhaltlich: Grundkenntnisse der Biologie, insbesondere grundlegendes Verständnis der Zelle als organisatorische Einheit der Lebewesen, Prinzip der Proteinbiosynthese (Transkription, Translation) und des Stoffwechsels.

Prüfungsformen, Notenbildung

Klausur (100%)

Voraussetzungen für die Vergabe von Kreditpunkten

Bestandene Klausur, Teilnahme am Praktikum, bestandene Protokolle

Verwendung des Moduls (in anderen Studiengängen): keine

Stellenwert der Note für die Endnote: Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Schauder / Prof. Dr. Schauder, Prof. Dr. Hebenbrock

Literatur

Biologie * Campbell, N.A. & Reece, J.B. * Spektrum Akademischer Verlag

Sonstige Informationen

Kennnum	mer	Workload	Credits	Studiensemest	er Häufigk	eit des Angebots	Dauer
MG		130 h	5	1. Sem.	jewe	eils 1x pro Jahr	1 Semester
		Itungen und Übungen			Contaktzeit 60 h	Selbststudium 70 h	geplante Gruppengröß 40 Studierend
Die S Basis angev Auf de Vekto	tudieren benötigt vendet w em Gebi r und Ma	werden. Die wi verden. Die Stud et der Linearen	Grundbegriffe chtigen Kalkü dierenden beh Algebra behe	en der Mathematik de wie Differenzier nerrschen dabei die errschen die Studie	en und Integri e Interpretatio renden die fü	n den Anwendungsveren können in einfanden können in einfanden ker Ergebnisse. Franwendungen wich systemen in Praxis	acheren Beispiele ntigen Begriffe wi
Algeb Eleme	en und <i>F</i> ra: Vekto entare Fo	orräume, lineare	e Abbildunger nome, Logarit	n, Determinanten, I	Matrizen und l	elle, komplexe Zahle ineare Gleichungssy onometrische Funkti	vsteme; Analysis
	ormen sung, Üb	ungslektionen,	jeweils mit Vo	or- und Nachbereit	ıng		
5 Teilna	ahmevo	raussetzungen					
Form	al: keine						
Inhalt	:li ch : kei	ne					
6 Prüfu	ngsforn	nen					
Absch	nlussklau	ısur					
90-mi	nütige A		r sowie Teilna	ahme an den angel		e-Übungen; Mindes e wird vom Dozente	
Das N	odul wir	-	mit den Studi	5 5 ,	s Administrati	on, Business Inform	ation Managem
		Engineering an					
		er Note für die ntsprechend de					
		ragte/r und hau cher-Otto / Prof	•		Lange-König	, Prof. Dr. U. Müller-	Nehler
11 Sons	tige Info	rmationen -					
12 Litera	itur						
		. •		Chemiker, Wiley- -3, Springer Viewe		m; L. Papula: Mathe	ematik für

En	glisch							
Ken	nnummer EN	Workload 208 h	Credits 8	Studiensem 1. + 2. Se			eit des Angebots ls 1x pro Jahr	Dauer 2 Semester
1	a) Englisch b) Facheng	im Arbeitsleben			,	taktzeit 40 h 40 h	Selbststudium 64 h 64 h	geplante Gruppengröße 40 Studierende

Grundlagen der englischen Sprache (Grammatik, Wortschatz und Diskursfähigkeit) in ihrer Anwendung im Berufsund Wirtschaftsleben zu erinnern, zu üben und auszubauen, um sich schriftlich und mündlich klar und idiomatisch mitzuteilen. Die Studierenden lernen englische Fachbegriffe aus dem chemisch-verfahrenstechnischen Umfeld und können diese anwenden.

3 Inhalte

Gründliche Wiederholung aller Zeitformen; Meinungen äußern, Information präsentieren, Vergleiche ziehen, Absichten/Pläne/Hypothesen formulieren, Zustimmung und Ablehnung ausdrücken, Bedingungen darstellen. Typische Fachbegriffe aus Biologie, Chemie und Verfahrenstechnik.

4 Lehrformen

Seminaristischer Unterricht mit Präsentationen, Gruppendiskussionen, Ausarbeitung von Protokollen und Vorschriften, Übersetzungen als Übungen, jeweils mit Vor- und Nachbereitung

5 Teilnahmevoraussetzungen

Formal: keine Inhaltlich: keine

6 Prüfungsformen

a) Tests sowie semesterbegleitenden Gruppenarbeiten; b) Präsentationen

7 Voraussetzungen für die Vergabe von Kreditpunkten

a) Bestandene Abschlussklausur sowie semesterbegleitende Gruppenarbeiten nach Maßgabe des Dozenten; Gewichtung nach Maßgabe des jeweiligen Dozenten sowie Teilnahme an den angebotenen Online-Übungen; Mindestbestehensquote bei den Online-Lerneinheiten, um zur Klausur zugelassen zu werden, Quote wird vom Dozenten festgelegt. b) semesterbegleitende Tests, Präsentation

8 Verwendung des Moduls (in anderen Studiengängen)

Englisch im Arbeitsleben kann übergreifend mit den anderen Bachelorstudiengängen am Standort Frankfurt angeboten werden. Fachenglisch kann übergreifend mit Chemical Engineering angeboten werden.

9 Stellenwert der Note für die Endnote

Gewichtung entsprechend der CrPs

10 | Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. U. Bicher-Otto / Prof. Dr. U. Bicher-Otto, Prof. Dr. W. Schiebler, Prof. Dr. R. Schauder

11 | Sonstige Informationen -

12 Literatur

R. Murphy: English Grammar in Use (Intermediate), Klett Verlag, Stuttgart; I. McKenzie: English for Business Studies, Cambridge University Press, weitere spezielle Literatur wird in den Veranstaltungen zur Verfügung gestellt

Ker	nnummer	Workload	Credits	Studiensem	ester	Häufigk	eit des Angebots	Dauer
	GBWA 182 h 7 1. Se		1. Sem.	n. jeweils 1x pro Ja		ils 1x pro Jahr	1 Semester	
Lehrveranstaltungen a) Grundlagen der Betriebswirtschaftslehre b) Planspiel c) Wissenschaft. Arbeiten und Präsentationstechniken					taktzeit 20 h 20 h 40 h	Selbststudium 32 h 32 h 38 h	geplante Gruppengröße a) 140; b) 15; c) 40	

a) Die Studierenden verstehen Grundlagen zu Aufbau und Funktionsweise von Unternehmen; b) können im Planspiel spielerisch in Teams die Konsequenzen von unternehmerischen Entscheidungen erkennen und antizipieren sowie hinsichtlich ihrer Wirksamkeit beurteilen; c) Erlernen des wiss. Arbeitens auf Grundlage von Literaturrecherche mittels internetbasierender Datenbanken u. klassischer Bibliotheksarbeit, dem Verwalten von Literaturstellen. dem Erstellen von wiss. Arbeiten anhand von Vorlagen sowie dem Aus- und Bewerten experimenteller Versuchsergebnisse. Die Studenten wenden die in den Recherchen erlangten Erkenntnisse zum Erstellen eigener wiss. Fachreferate, insbesondere auch der Berichte zur wiss. angeleiteten Berufspraxis und zur Gestaltung und Strukturierung des Aufbaus einer wiss. Präsentation an.

3 Inhalte

a) Grundlagen BWL: Grundbegriffe, Grundlagen konstitutive Entscheidungen (Rechtsformwahl, Standortentscheidungen sowie Kooperationen). Managementbegriff, Zielsystem des Unternehmens, Unternehmensplanung und kontrolle, strategisches Management, Personalmngt (Überblick Grundlagen Personalarbeit, Organisation). Zu allen Teilabschnitten werden die grundsätzlichen Entscheidungstatbestände sowie die wesentlichen Lösungs- bzw. Modellansätze in einem praxisorientierten Kontext dargestellt und b) im Zuge des Planspiels aufgegriffen. c) Erarbeitung des strukturierten wiss. Arbeitens, welches durch praxisrelevante Beispiele, Präsentationstechniken und selbstständige Literaturrecherche vertieft wird.

4 Lehrformen

Vorlesungen, Planspiel, Gruppenarbeit, Bibliotheksbesuch

5 Teilnahmevoraussetzungen

Formal: keine Inhaltlich: keine

6 Prüfungsformen

BWL-Klausur (80 %); Planspiel (20 %)

7 Voraussetzungen für die Vergabe von Kreditpunkten

Bestandene Prüfungsleistungen und Anwesenheitspflicht beim Planspiel

8 | Verwendung des Moduls (in anderen Studiengängen)

Kann übergreifend mit den anderen Bachelorstudiengängen am Standort Frankfurt angeboten werden.

9 Stellenwert der Note für die Endnote

Gewichtung entsprechend der CrPs

10 | Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. R. Engelhardt / Prof. Dr. R. Engelhardt, Prof. Dr. R. Ehret, Prof. Dr. R. Schauder

11 | Sonstige Informationen

12 Literatur

J. Boy, C. Dudek, S. Kuschel: Projektmanagement. Grundlagen, Methoden u. Techniken, Zusammenhänge, Gabal Verlag, Offenbach; M. Hartmann, M. Rieger, M. Luoma: Zielgerichtet moderieren, Beltz-Verlag; M. Scott: Zeitgewinn durch Selbstmanagement, Campus, Frankfurt/M.; J. B. Sperling, J. Wasseveld: Führungsaufgabe Moderation, R. Haufe Verlag, München; G. Zelazny: Wie aus Zahlen Bilder werden. Redline Wirtschaftsverl., Heidelberg

Grundlagen der Chemie											
Kennnummer	Credits	iensemester	Häuf	igkeit des Angebo 1 mal jährlich	ts						
GC	182 h	7	1.	– 2. Sem.		2 Semester					
Lehrveranstaltı	ıngen			Kontaktzeit		Selbststudium	G	eplante			
a) Grundlagen d	Semester)	40 h		38 h	G	ruppengröße					
b) Organische C	50 h		54 h	40) Studierende						

Nach dem Studium des Moduls sind die Studierenden in der Lage,

- Die Chemie als Grundlage der Biologie zu akzeptieren
- die nachfolgenden naturwissenschaftlichen Module zu verstehen.

Inhalte

- a) Aufbau der Materie, Periodensystem, Bindungstheorie und Bindungstypen, Chemische Reaktionen, Stöchiometrie, Chemisches Gleichgewicht, Massenwirkungsgesetz, Säure-Base-Reaktionen, Redoxreaktionen.
- b) Bindungsverhältnisse in der Organischen Chemie, Substanzklassen: Alkane, Cycloalkane. Alkene, Alkine, Halogenalkane, Aromaten, Alkohole, Ether, Carbonylverbindungen, Carbonsäuren und deren Derivate, Amine, Aminosäuren. Grundlegende Reaktionsmechanismen (Beispiele, jeweils mit Beziehungen zu Enzymreaktionen aus dem Zellstoffwechsel): Nukleophile Substitutionen an gesättigten Kohlenstoffatomen, Eliminierungen, Elektrophile und nukleophile Additionen an Kohlenstoff-Kohlenstoff Doppelbindungen, Nukleophile Additionen an Kohlenstoff-Sauerstoff Doppelbindungen, Stereochemie

Lehrformen

Seminar, Stations-Gruppenarbeiten

Teilnahmevoraussetzungen

Formal: keine Inhaltlich: keine

Prüfungsformen, Notenbildung

a) Teilklausur (50%); b) Teilklausur (50%)

Voraussetzungen für die Vergabe von Kreditpunkten

Jeweils bestandene Teilklausuren

Verwendung des Moduls (in anderen Studiengängen)

Die ersten 40 h Grundlagen der Chemie können gemeinsam mit Studiengang Chemical Engineering unterrichtet werden

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Schiebler / Prof. Dr. Schiebler, Prof. Dr. Ehret

Literatur

Allgemeine und Anorganische Chemie * Riedel, E. * (2004) * de Gruyter-Verlag; Basiswissen der Chemie * Mortimer, Ch.E. * Thieme-Verlag; Lehrbuch der Organischen Chemie * Beyer, Hans & Walter, Wolfgang * S. Hirzel Verlag; Organische Chemie * Peter, K. & Vollhardt, C. & Schore, Neil E. & Butenschön, H. * WILEY-VCH Verlag; Organische Chemie * Streitwieser, Andrew & Heathcock, Clayton H. * WILEY-VCH Verlag; Reaktionsmechanismen in der Organischen Chemie * Sykes, Peter * WILEY-VCH Verlag; Reaktivität, Reaktionswege, Mechanismen – Ein Begleitbuch zur Organischen Chemie im Grundstudium * Lüning, Ulrich * Spektrum Akademischer Verlag

Angewand	Angewandte Mathematik und Physik											
Kennnummer	Workload	Credits	Stud	liensemester	Häuf	igkeit des Angebo	ots	Dauer				
AMuP	234 h	9	2. Se	em.	n. 1 mal jährlich			2 Semester				
Lehrveranstaltı	ungen	•		Kontaktzeit	•	Selbststudium	Gep	lante				
a) Angewandte Mathematik			60 h		70 h	Gru	ppengröße					
c) Physik			50 h		54 h	40 5	Studierende					

Nach dem Studium des Moduls sind die Studierenden in der Lage,

- Mathematische und physikalische Phänomene der Biologie und der Verfahrenstechnik zu erkennen
- Die erlernten Methoden auf biologische und verfahrenstechnische Fragestellungen anzuwenden und
- die Ergebnisse ihrer Untersuchungen zu bewerten.

Inhalte

- a) Kombinatorik; Relationen (Äquivalenzen, Ordnungsstrukturen); Analysis: Elementare Funktionen (Polynome, Logarithmus, Exponentialfunktion, Trigonometrische Funktionen), Differential- und Integralrechnung; Grundlagen und Anwendungen der Statistik)
- b) Mechanik, Optik, Schwingungen und Wellen, Elektrizität und Magnetismus

Lehrformen

Vorlesung, Übungen

Teilnahmevoraussetzungen

Formal: keine

Inhaltlich: Mathematische Grundlagen

Prüfungsformen, Notenbildung

a) Teilklausur (55%); b) Teilklausur (45%)

Voraussetzungen für die Vergabe von Kreditpunkten

Jeweils bestandene Teilklausuren

Verwendung des Moduls (in anderen Studiengängen)

Vorlesung und Übung gemeinsam mit Studiengang Chemical Engineering möglich

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Müller-Nehler / Prof. Dr. Bicher-Otto, Prof. Dr. Müller-Nehler

Literatur

- H.G. Zachmann, A. Jüngel: Mathematik für Chemiker, Wiley-VCH, Weinheim; L. Papula: Mathematik für Ingenieure und Naturwissenschaftler Bd. 1-3, Springer Vieweg, Wiesbaden
- D. Halliday, R. Resnick, J. Walker: Halliday Physik. Bachelor-Edition, Wiley VCH, Berlin; P. A. Tipler, G. Mosca: Physik für Wissenschaftler und Ingenieure, Springer Spektrum

Genetik 1	Genetik 1 und Praxisbericht 1											
Kennnummer	Workload	Credits	Stu	diensemester	Häufigkeit des Ange	ebots	Dauer					
ZB 1	286 h	11	2. 8	Sem.	1 mal jährlich		1 Semester					
Lehrveranstalt	ungen	•		Kontaktzeit	Selbststudium		Geplante					
a) Genetik 1				40 h	38 h	Gı	ruppengröße					
b) Genetisches Praktikum				52 h	16 h	25	Studierende					
c) Seminar zum wiss. Arbeiten				10 h	78 h							
d) Praxisbericht												

Nach dem Studium des Moduls sind die Studierenden in der Lage,

- Gentechnische Arbeiten zu planen, sie nach naturwissenschaftlichen und ethischen Maßstäben zu bewerten und durchzuführen
- Wissenschaftliche Texte an formalen Kriterien zu orientieren und zu erarbeiten

Inhalte

a) Aufbau von Nucleinsäuren, Replikation, Transkription und Translation, Mutationen und die dazugehörigen Reparaturmechanismen, Rekombination, Mechanismen der Regulation der Genexpression auf DNA-Ebene, Aufbau von Chromosomen und Genomen, Aufbau und Vermehrung von Viren.

Methoden zum Nachweis und zur Charakterisierung von Nucleinsäuren, einschließlich der DNA-Sequenzierung, Methoden und Strategien zur Klonierung von DNA und zur Transformation von Zellen, Crispr- CaS

- b) Umklonierung eines Gens in E. coli, Isolierung und Überprüfung des erhaltenen Plasmids.
- c)/d) Identifizerung geeigneter praktischer Themen für eine systematische, wissenschaftliche Untersuchung, Planung und Durchführung der Versuche in den Einrichtungen der Studierenden, Darstellung des Projekts als Praxisbericht in Form einer wissenschaftlichen Veröffentlichung. Die Studierenden werden während der praktischen Phase in Form beratender Seminare begleitet

Lehrformen

- a) seminarisitische Vorlesung, Übungen, Stations- und Gruppenarbeiten.
- b) Praktikum, c) Wissenschaftlich angeleitete Berufspraxis

Teilnahmevoraussetzungen

Formal: keine

Inhaltlich: Grundlagen der Biologie, Grundlagen der Chemie/organische Chemie,

Prüfungsformen, Notenbildung

a,b) Klausur (45 %) Protokolle (0%) c)/d) Praxisbericht (65 %)

Voraussetzungen für die Vergabe von Kreditpunkten

Bestandene Klausur, Teilnahme am Praktikum, bestandene Protokolle, bestandener Praxisbericht

Verwendung des Moduls (in anderen Studiengängen)

Keine

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Schauder / Prof. Dr. Schauder, Prof. Dr. Schiebler, Prof. Dr. Hebenbrock

Literatur

Biochemie * Styrer, L. Spektrum Akademischer Verlag; Molekulare Genetik, Nordheim, A; Knippers, R. Thieme-Verlag

Sonstige Informationen

Biochemie					
Kennnummer	Workload	Credits	Studien- semester	Häufigkeit des Angebots	Dauer
BC	156 h	6	3. Sem.	1 mal jährlich	1 Semester
Lehrveranstaltun	gen		Kontaktzeit	Selbststudium	Geplante
a) Biochemie			50 h	54 h	Gruppengröße
c) Biochemisches Praktikum			52 h		25 Studierende

Nach dem Studium des Moduls sind die Studierenden in der Lage,

- Den Aufbau und die Funktionsweise einer Zelle darzustellen
- Makromoleküle zu trennen und nachzuweisen.
- Die dafür benötigten Methoden auszusuchen und die Grenzen ihrer Aussagekraft abzuschätzen

Inhalte

- a) Einführung in die Zellbiologie; Aufbau, Struktur und Funktion von Proteinen und Enzymen; katalytische Strategien, Proteinreinigung; Grundlagen der Immunologie;; Aufbau und Funktion der Kohlenhydrate; struktureller Aufbau der Lipide und Funktion einer Zellmembran; Grundlagen des Stoffwechsels; am Beispiel der Glykolyse; Citratzyklus; Oxidative Phosphorylierung (Atmungskette)
- b) Vergleich Quantifizierung von Proteinen in Lösungen,

Trennung von Proteinen mittels Fällung, Säulenchromatographie und SDS-Gelelektrophorese., Quantifizierung von Enzymaktivitäten mit und ohne Hemmstoff, Enzymkinetik.

Lehrformen

- a) seminarisitische Vorlesung, Übungen, Stations- und Gruppenarbeiten.
- b) Praktikum

Teilnahmevoraussetzungen

Formal: keine

Inhaltlich: Grundlagen der Biologie, Grundlagen der Chemie/organische Chemie,

Prüfungsformen, Notenbildung

a) Klausur (100%); b) Protokolle (0%)

Voraussetzungen für die Vergabe von Kreditpunkten

Bestandene Klausur, Teilnahme am Praktikum, bestandene Protokolle

Verwendung des Moduls (in anderen Studiengängen)

Keine

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Schiebler / Prof. Dr. Schiebler, Prof. Dr. Hebenbrock

Literatur

Biochemie * Lehninger, A. L. * Springer-Verlag; Biochemie * Müller-Esterl, Werner Spektrum Akademischer Verlag; Biochemie * Styrer, L. * Spektrum Akademischer Verlag; Lehrbuch der Biochemie * Voet, Donald J. & Voet, Judith G. * WILEY-VCH Verlag; Principles of Biochemistry: International Edition * Horton, Robert * 4.Auflage Prentice Hall

Sonstige Informationen

Zellbiologie 1										
Kennnummer	Workload	Credits	Studien- semester	Häufigkeit des Angebots		Dauer				
ZB 1	156 h	6	3. Sem.	1 mal jährlich		1 Semester				
Lehrveranstaltunge	en	1	Kontaktzeit	Selbststudium	Ge	olante				
a) Zellbiologie			50 h	54 h	Gru	ıppengröße				
b) Zellbiologisches F	Praktikum		52 h		25	Studierende				

Nach dem Studium des Moduls sind die Studierenden in der Lage,

- Möglichkeiten zur Beeinflussung von Zellen und Geweben für zukünftige medizinische Ansätze zu entwickeln
- Die Auswirkungen von Wirkstoffen auf Zellen zu analysieren und zu quantifizieren
- Sich in zellbiologische Fragestellungen einzuarbeiten und ihre Erkenntnisse zu präsentieren

Inhalte

- a) Biochemische Vorgänge beim Membran- und Proteintransport eukaryontischer Zellen (anterograder, retrograder Transport vom ER über Golgi zur äusseren Zellmembran), Membranproteinsynthese, Biochemie und Zellbiologie zellulärer Signaltransduktion bei physiologischen und pharmakologischen Vorgängen mit Bezug auf ihre therapeutische Bedeutung/technische Anwendung.
- b) Analyse der Auswirkung von Wirkstoffen auf die Modifikation von Proteinen in Zelllinien über immunologische Methoden (Western Blot).

Lehrformen

a) Seminar und Gruppen/Stationsarbeiten; b) Laborpraktikum

Teilnahmevoraussetzungen

Formal: keine

Inhaltlich: Biochemie, Englisch

Prüfungsformen, Notenbildung

a) Klausur (100 %)

c) Protokolle (0%)

Voraussetzungen für die Vergabe von Kreditpunkten

Jeweils bestandene Klausuren / Teilnahme am Praktikum, bestandene Protokolle

Verwendung des Moduls (in anderen Studiengängen)

keine

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Schiebler / Prof. Dr. Schiebler, Prof. Dr. Schauder

Literatur

B. Alberts et al, Molecular Biology of the Cell, 8th Edition 2008, (Springer Verlag 2012, deutsche Version) Stryer, Biochemie, 6th Edition 2008, Spektrum Verlag

Sonstige Informationen

Genetik 2						
Kennnummer	Workload	Credits	Studien- semester	Häufigkeit des Angebots		Dauer
GEN2	182 h	7	3. Sem.	1mal jährlich		1 Semester
Lehrveranstaltung	gen	1	Kontaktzeit	Selbststudium	Ge	plante
a) Genetik 2			50 h	54 h	Gru	ıppengröße
b) genetisches Pra	ktikum		52 h		25	Studierende

Nach dem Studium des Moduls sind die Studierenden in der Lage,

- Möglichkeiten zur Beeinflussung von Zellen und Geweben für zukünftige medizinische Ansätze zu entwickeln

Inhalte

- a) Funktionelle Analyse von Genomen; Funktion kodierender und nicht kodierender Abschnitte auf den Chromosomen, RNA als Regulatoren; genetisch manipulierbare Modell-Organismen zur funktionellen Genomik; Herstellung und Nutzen transgener Tiere; das humane Genomprojekt; Struktur und Funktion des humanen Genoms; Epigenetik; Strategien zur Sequenzierung ganzer Genome; der Einsatz von "genetic engineering" bei der Herstellung von biologischen Wirkstoffen; Methoden zur Analyse von Expressionsmustern in Zellen; individuelle Prognose zur Wirksamkeit von Medikamenten (personalisierte Medizin); Genotypisierung und genetische Assoziationsstudien zur Identifizierung von Krankheitsgenen; neue therapeutische Ansätze durch regenerative Medizin, Zelltherapie und Gentherapie.
- b) Transiente Transfektion eukaryontischer Zellen.

Lehrformen

- a) Seminar und Gruppen/Stationsarbeiten
- b) Laborpraktikum

Teilnahmevoraussetzungen

Formal: keine

Inhaltlich: Biochemie und Genetik1, Englisch

Prüfungsformen, Notenbildung

a) Präsentation (100 %); b) Protokolle (0%)

Voraussetzungen für die Vergabe von Kreditpunkten

Jeweils bestandene Präsentation, Teilnahme am Praktikum, bestandene Protokolle

Verwendung des Moduls (in anderen Studiengängen)

keine

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Schauder / Prof. Dr. Schiebler, Prof. Dr. Schauder

Literatur

B. Alberts et al, Molecular Biology of the Cell, 8th Edition 2008, (Springer Verlag 2012, deutsche Version) Stryer, Biochemie, 6th Edition 2008, Spektrum Verlag

Sonstige Informationen

Anwesenheitspflicht im Laborpraktikum. Einzelne Versuche können nach Vorlage geeigneter Nachweise anerkannt werden, Das Praktikum wird gekoppelt mit dem Praktikum Zellbiologie durchgeführt.

Betriebsfü	Betriebsführung 1											
Kennnummer	Workload	Credits	Studi	ensemester Häufigkeit des Angebots			ots	Dauer				
BF 1	+4. Sem.		1 mal jährlich		2 Semester							
Lehrveranstaltı	Lehrveranstaltungen					Selbststudium		Geplante				
a) Betriebswirtso	40 h		38 h		Gruppengröße							
b) Personalführu	ing und Organi	sation		40 h		38 h		25 Studierende				

Die Studierenden sind in der Lage, Aufbau und Funktionsweise eines Unternehmens zu erkennen; Ihre eigene Rolle innerhalb des Unternehmens darzustellen und sich in die Denkweise der Kollegen anderer Berufsgruppen einzufinden und mit ihnen zu kommunizieren.

Inhalte

- a) Organisationstheoretische Ansätze; Wirkung von Organisationsstrukturen; Grundlagen der Aufbau- und Ablauforganisation; Methoden der Prozessbeschreibung und –analyse; Vorgehensmodell zur Prozessopt.; Akt. Trends in der Organisationsgestaltung: Management-Methoden und grundlegende Neuerungen; Personalführung: Grundlagen der Personalführung, Führungstheorie und -modelle, Leistungs- und Verhaltenskontrolle, Beurteilung, Mitarbeitermotivation, Macht, Teamarbeit, Teamentwicklung, Personalentwicklung, Personalpolitik. Führung in besonderen Situationen, Straftaten im Arbeitsverhältnis; Fragerecht des Arbeitgebers bei Begründung von Arbeitsverhältnissen, Aspekte inhaltlicher Gestaltung von Arbeitsverträgen, Nachweispflicht, Rechte und Pflichten im laufenden Arbeitsverhältnis, Versetzung, Eingruppierung, Vergütung, arbeitsrechtliche Grundzüge insb. zu: Urlaub, Krankheit im Arbeitsverhältnis, Schutz besonderer Personengruppen, Diskriminierungsverbote, Beschwerderecht des Mitarbeiters, Arbeitszeitschutz, Haftung im Arbeitsverhältnis; Anknüpfungspunkte zur Sozialversicherung; Beendigung von Arbeitsverhältnissen, Systematik der Kündigungsgründe; allgemeiner und besonderer Kündigungsschutz; Zeugnis, Bezüge zum Betriebsverfassungsrecht, Mitbestimmungsrechte.
- b) Grundlagen: Unternehmen als offene, dynamische soziale Systeme; Überblick: Güter- und Finanzströme im Unternehmensprozess; Gründungsrelevante Problemstellungen (Rechtsform, Unternehmenskooperation, Standort, Unternehmenszweck, Mission/Vision); Führungsrelevante Funktionsbereiche (Unternehmens-/Personalführung, Organisation); Funktionsbereiche des finanzwirtschaftlichen Umwandlungsprozesses (Finanzierung, Kostenrechnung, Investition); Güterwirtschaftliche Transformationsprozesse: Beschaffung, Produktion und Absatz

Lehrformen

seminaristischer Unterricht, Gruppenarbeit, Übungen

Teilnahmevoraussetzungen

Formal: keine

Inhaltlich: Allgemeine Betriebswirtschaftslehre

Prüfungsformen, Notenbildung

a) Präsentation (50%), b) Klausur (50%)

Voraussetzungen für die Vergabe von Kreditpunkten

Jeweils bestandene Klausuren und bestandene Präsentation

Verwendung des Moduls (in anderen Studiengängen)

Dieses Modul wird fächerübergreifend mit den Bachelorstudiengängen Business Administration, Business Information Management und Chemical Engineering durchgeführt.

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Utikal / Prof. Dr. Utikal, Prof. Dr. Engelhardt, Prof. Dr. Bueß

Literatur

H. Jung: Allgemeine Betriebswirtschaftslehre, Oldenbourg Verlag; J.-P. Thommen, A.-K. Achleitner: Allgemeine Betriebswirtschaftslehre. Umfassende Einführung aus managementorientierter Sicht, Gabler Verlag; A. Töpfer: Grundlagen der Betriebswirtschaftslehre - Eine anwendungsorientierte Einführung, Vahlen; D. Vahs, J. Schäfer-Kunz, M. Simoneit: Einführung in die Betriebswirtschaftslehre, Schaeffer-Poeschel-Verlag; W. Weber: Einführung in die Betriebswirtschaftslehre, Gabler Verlag; G. Wöhe: Einführung in die Allgemeine Betriebswirtschaftslehre, Vahlen.

Biophysik und Analytik										
Kennnummer	Workload	Credits	Studien- semester		läufigkeit des Angebots		Dauer			
BPA	182 h	7	3.+4. Sem.	1	mal jährlich		2 Semester			
Lehrveranstaltun	gen	•	Kontaktzeit	•	Selbst- studium		plante ippengröße			
a) Biophysik b) Instrumentelle A	40 h 40 h		38 h 64 h	25	Studierende					

Nach dem Studium des Moduls sind die Studierenden in der Lage,

- Die biophysikalischen Phänomene der belebten Natur zu erklären
- Aufgrund ihres Verständnisses der Wirkweise diverser Untersuchungsmethoden die richtige auszusuchen und deren Ergebnisse zu bewerten
- Methoden zur Trennung und Analyse biologischer Wirkstoffe auszuwählen

Inhalte

- a) Die Abschnitte dieser Lehrveranstaltung sind inhaltlich wie folgt gegliedert: Stöchiometrisches Rechnen; Transporterscheinungen (Viskosität, Diffusion, Sedimentation, Zentrifugation); Biologische Membranen, Einführung; Grenzflächen, Detergenzien, Oberflächenspannung; Grundlagen der Thermodynamik, Hauptsätze der Thermodynamik mit Bezug zu biologischen Systemen, Elektrochemische Prozesse an Grenzflächen. Verknüpfung elektrochemischer und thermodynamischer Größen, Massenwirkungsgesetz elektrochemisches Potential und Proton motiv force; Thermodynamische Betrachtung von biologischen Redoxreaktionen und Bildung von Makromolekülen; Vorgänge an Membranen und physikalisch-chemische Triebkräfte; Kinetik biochemischer Reaktionen
- b) Chromatographische Grundlagen und Methoden (alle Formen der LC und HPLC), Elektrophorese (Gel- und MC-Elektrophorese), Spektroskopie (UV-Vis, IR, NMR), Massenspektrometrie für kleine Moleküle sowie Proteine und Peptide (Proteomics)

Lehrformen

Seminar und Gruppenübungen

Teilnahmevoraussetzungen

Formal: keine

Inhaltlich: Biochemie und Genetik, Mathematik und Physik

Prüfungsformen, Notenbildung

a) Teilklausur (50%)

b) Teilklausur (50%)

Voraussetzungen für die Vergabe von Kreditpunkten

Jeweils bestandene Klausuren

Verwendung des Moduls (in anderen Studiengängen)

keine

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Hebenbrock

Prof. Dr. Hebenbrock, Prof. Dr. Schiebler

Literatur

Analytische Chemie * Otto, Matthias * WILEY-VCH Verlag; Principles of Instrumental Analysis * Skoog, Leary Spektroskopische Methoden in der organischen Chemie * Hesse, M. & Meier, H. & Zeeh, B. * Thieme-Verlag; Physikalische Chemie und Biophysik * Adam, Läuger, Stark * Springer Verlag; Physical Chemistry for the Life Sciences * Atkins, P.; de Paula, J.; * Freeman, W.H. & Co.

Kennnummer	Workload	Credits	Studien- semester	figkeit des Angebot al jährlich	ts Dauer
WAK 2	286 h	11	3.+4. Sem.	•	2 Semester
Lehrveranstaltun	gen	•	Kontaktzeit	Selbststudium	Geplante
a) Wissensch	aftliches Arbeiten	2	10 h	16 h	Gruppengröße
	ftliches Arbeiten	3	10 h	26 h	25 Studierende
c) Praxisberic	ht			26 h (3. Sem)	
				120 h	

Nach dem Studium des Moduls sind die Studierenden in der Lage,

- Praktische Untersuchungen, Versuche und Experimente in Eigenregie zu konzipieren, sie durchzuführen und auszuwerten,
- Daraus wissenschaftlich belastbare Schlüsse zu ziehen,
- Diese wissenschaftlich zu kommunizieren

Inhalte

Wissenschaft: Definition, Einteilung, Wissenschaftsethik

Vorgehensweise bei wissenschaftlichen Arbeiten: induktive / deduktive Vorgehensweise, Art der Themenfindung, Motivation zur Durchführung von Experimenten, Recherche, Planung von Versuchen, Qualitätskontrolle. Identifizerung geeigneter praktischer Themen für eine systematische, wissenschaftliche Untersuchung, Planung und Durchführung der Versuche in den Einrichtungen der Studierenden, Darstellung des Projekts als Praxisbericht in Form einer wissenschaftlichen Veröffentlichung. Die Studierenden werden während der praktischen Phase in Form beratender Seminare begleitet

Lehrformen

seminaristischer Unterricht, Gruppenarbeiten, Übungen

Teilnahmevoraussetzungen

Formal: keine

Inhaltlich: Grundlagen Wissenschaftliches Arbeiten, Englisch

Prüfungsformen

Praxisbericht

Voraussetzungen für die Vergabe von Kreditpunkten

bestandener Praxisbericht

Verwendung des Moduls (in anderen Studiengängen)

keine

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Schauder / Prof. Dr. Schauder, Prof. Dr. Hebenbrock, Prof. Dr. Ehret

Literatur

Die Technik wissenschaftlichen Arbeitens * Franck N., Stary J., UTP; Bachelor-, Master- und Doktorarbeit * Ebel, Bliefert * Wiley-VCH

Grundlagen der industriellen Mikrobiologie und Zellkultur										
Kennnummer	Workload	Credits	S	Studiensemester	Häufigkeit des Angebots			Dauer		
GMZ	234 h	9	4	. Sem. 1 mal jährlich				1 Semester		
Lehrveranstaltun	gen	1	l.	Kontaktzeit		Selbststudium	Geplar	nte		
a) Mikrobiologie und Zellkultur			60 h 70 h		70 h	Grupp	engröße			
c) Praktikum zur Mikrobiologie und Zellkulturen				104 h			25 Stud	dierende		

Nach dem Studium des Moduls sind die Studierenden in der Lage,

- Mikroorganismen und Zellkulturen zu kultivieren und zu identifizieren
- Mikrobiologische Qualitätskontrollen in biotechnischen Betrieben zu entwickeln und durchzuführen

Inhalte

- a) Biologie und Stoffwechsel von Mikroorganismen, Systematik, Vermehrung und Wachstumsbedingungen von Bakterien, Mikroorganismen als Produzenten, Verunreiniger und Krankheitserreger. Identifizierung von Mikroorganismen. Zellkulturen aus Säugern, Insekten und Pflanzen: Eigenschaften, Ansprüche und Vermehrung der Zellen, Einsatz und seine Grenzen. Desinfektion, Sterilisation, mikrobiologische Qualitätskontrolle von Produkten, Wasser und Luft.
- c) Die Studierenden lernen Bakterien mit unterschiedlichen Stoffwechselleistungen (aerob, anaerob, verschiedene Gärtypen) und in unterschiedlichen Funktionen (z.B. typische Kontaminanten, Produzenten) kennen und sie auf festen und in flüssigen Medien zu vermehren. Sie quantifizieren Keime in Proben (z.B. Wasser- oder Luftproben) und stellen Reinkulturen her. Sie identifizieren Isolate anhand ihrer Stoffwechselleistungen und über biochemische oder molekularbiologische Methoden (z.B. durch Sequenzierung der 16 S rRNA). Sie erlernen und vertiefen Steriltechniken.

Lehrformen

Vorlesungen, seminaristischer Unterricht, Gruppenarbeiten, angeleitete Übungslektionen in Hausarbeit, Praktikum

Teilnahmevoraussetzungen

Formal: keine

Inhaltlich: Biochemie/Genetik

Prüfungsformen, Notenbildung

a) Klausur (100 %); b) Protokolle (0%)

Voraussetzungen für die Vergabe von Kreditpunkten

Bestandene Klausuren, Teilnahme am Praktikum und bestandene Protokolle

Verwendung des Moduls (in anderen Studiengängen)

Die Inhalte zur Betriebshygiene werden auch im Studiengang BCE angeboten

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Schauder / Prof. Dr. Hebenbrock, Prof. Dr. Schauder

Literatur

Allgemeine Mikrobiologie * Fuchs * Thieme-Verlag; Mikrobiologie * Brock * Spektrum Akademischer Verlag; Wallhäusers Praxis der Sterilisation, Antiseptik und Konservierung * Kramer, A., Assadian, D. * Thieme Verlag

Sonstige Informationen

Verfahrenstechnik und Vertiefungskurs 1										
Kennnummer	Workload	Credits	Studien- semester		läufigkeit des Angebots		Dauer			
VTVM	156 h	6	4. Sem.	1	mal jährlich		1 Semester			
Lehrveranstaltungen			Kontaktzeit		Selbst- studium		plante uppengröße			
a) Grundlagen der b) Vertiefungskurs	40 h 40 h		38 h 38 h	25	Studierende					

Nach dem Studium des Moduls sind die Studierenden in der Lage,

- Prozessfließbilder chemischer und biotechnischer Anlagen zu interpretieren
- Den Einfluss verwendeter Werkstoffe eine Anlage auf die Prozessführung zu bewerten
- Zu b) Siehe Beschreibungen der einzelnen Vertiefungskurse am Ende des Modulhandbuchs

Inhalte

- a) Technische Werkstoffe, technische Apparate, Konzept der unit operations, RI-Fließbilder, Grundlagen der Strömungslehre
- b) Siehe Beschreibungen der einzelnen Vertiefungskurse am Ende des Modulhandbuchs

Lehrformen

Vorlesungen, seminaristischer Unterricht, Gruppenarbeiten, angeleitete Übungslektionen in Hausarbeit,

Teilnahmevoraussetzungen

Formal: keine Inhaltlich: keine

Prüfungsformen, Notenbildung

- a) Teilklausur (50%)
- b) Teilklausur (50%) oder Präsentation

Voraussetzungen für die Vergabe von Kreditpunkten

Jeweils bestandene Klausuren bzw. Präsentationen

Verwendung des Moduls (in anderen Studiengängen)

keine

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Bayer / Prof. Dr. Masalovic, Prof. Dr. Bayer

Literatur

Grundbegriffe der Verfahrenstechnik * Siemens, W.; Grundoperationen der Chemischen Verfahrenstechnik * Vauck, Wilhelm R.A. & Müller Hermann A. * WILEY-VCH Verlag; Lehrbuch der technischen Chemie Band 2 – Grundoperationen * Gmehling, J. & Brehm, A. * WILEY-VCH Verlag; Mechanische Verfahrenstechik 1 * Stieß, M. * Springer-Verlag; Mechanische Verfahrenstechik 2 * Stieß, M. * Springer-Verlag; Technische Strömungslehre * Bohl, W. * Vogel Buchverlag

Statistik, Biostatistik und Qualitätssicherungssysteme											
Kennnummer QSBSWorkload 208 hCredits 8Studiensemester 5. Sem.Häufigkeit des Angebots jeweils 1x pro JahrDauer 1 Semester											
Lehrveranstaltu a) Statistik Gr b) Biostatistik c) Qualitäts- u	undlagen	anagement		K	ontaktzeit 32 h 18 h 40 h	Selbststudium 34 h 20 h 64 h	geplante Gruppengröße 40 Studierende				

Die Studierenden sind in der Lage, statist. Verf. auszuwählen u. auf (biol.) Daten anzuwenden. Sie haben Kenntnisse zur Anwendung versch. QM- u. QA-Systeme (GxP, DIN ISO), kennen die Bedeutung der Validierung, Qualifizierung u. Kalibrierung von Methoden u. Ausrüstung als Grundlage einer regelkonformen Produktion u. Analytik u. können verwendete Methoden sicher anwenden. Die Studierenden verstehen die Grundl. des Prozessmanagements.

Inhalte

- a) Einführung in die Statistik als mathemat. Werkzeug: Validierungsparameter biol./chem.Testsysteme; Deskriptive Statistik: Lage-, Streu-, Formmaße, graf. Darstellungen; Epidemiologie: Vierfeldertafel, Relatives Risiko, Odds Ratio, Prävalenz, Inzidenz, ROC-Kurven; Zufallsvariable u. Verteilungssysteme: Zufallsvariable, Verteilungsfunktion, Wahrscheinlichkeitsdichte, bedingte bzw. unbedingte Wahrscheinlichkeit, Normal-, Binominalverteilung; Schätzen: Grundgesamtheit, Stichprobe, zufälliger bzw. systemat., proportionaler bzw. konstanter Fehler, Schätzer, Konfidenzintervall; Testen: Null- bzw. Alternativhypothese, Fehler 1. u. 2. Art, Signifikanzniveau, Power, Anpassungstests, parametr. bzw. nichtparametrische Tests (Auswahl), 4-Feldertest; ANOVA: Ein- u. zweifaktorielle Varianzanalyse, multipler Paarvergleich (ANOVA Posttests); Korrelation u. Regression: Einfache bzw. multiple lineare Regression, Korrelationskoeff. bzw. Bestimmtheitsmaß, Residualanalyse, Scatterplot, polynominale Regression
- b) Statistik der Dosis-Wirkungs-Kurven (DWK): Dosiseinteilungen, Sigmoide Kurven, grafische Auswertung über Wahrscheinlichkeitspapier, Einführung in die Probit-Analyse
- c) Qualitätsmanagement, QS-Systeme, Validierung, Qualifizierung und Kalibrierung von Methoden und Ausrüstung, Risikoanalysen, Prozessmanagement, GxP von Klinik über Labor zur Herstellung

Lehrformen

Vorlesungen, Übungen, jeweils mit Vor- und Nachbereitung.

Teilnahmevoraussetzungen

Formal: keine Inhaltlich: keine

Prüfungsformen

2 Teilklausuren (a+b 50 %, c 50 %)

Voraussetzungen für die Vergabe von Kreditpunkten

Bestehen der Teilklausuren

Verwendung des Moduls (in anderen Studiengängen)

Teil a und b des Moduls wird auch im Studiengang BCE angeboten

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CrPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. K. Hebenbrock / Prof. Dr. K. Hebenbrock, Prof. Dr. D. Machmur

Sonstige Informationen

_

Literatur

- a) Köhler, Schachtel, Voleske: Biostatistik, Springer-Spektrum (2012); Fleckenstein, Gottwald, Schröder: Lexikon der analytischen Validierung, Vogel-Verlag (2011); Hartung, Elpelt, Klösner: Lehr- und Handbuch der angewandten Statistik, Oldenbourg-Verlag (2009); J. Schmuller: Statistik mit EXCEL für Dummys, VCH-Verlag, Weinheim (2005);
- b) Becker, Kugeler, Rosemann: Prozessmanagement, Springer Verlag; Schmelzer, Sesselmann: Geschäftsprozessmanagement in der Praxis, Hanser Verlag; Kromidas: Qualität im analytischen Labor; Wiley-VCH; Christ, Harston, Hembeck: GLP-Handbuch für Praktiker, GIT-Verlag; Bliem: Good Manufacturing Practice, facultas.wuv / maudrich

Bioanalytik und Bioanalytische Qualitätskontrolle										
Kennnummer Workload Credits Studiensemester Häufigkeit des Angebots Dauer										
BAQK	234 h	9		5.+ 6. Sem.		1mal jährlich		2 Semester		
Lehrveranstaltunge	en			Kontaktzeit	:	Selbststudium	Gepl	ante Gruppengröße		
a) Bioanalytik				40 h		38 h		25 Studierende		
b) Bioanalytisches P	104 h									
c) Bioanalytische Qu	ualitätskontrolle)		20 h		32 h				

Die Studierenden sind in der Lage, biol. Makromoleküle (Proteine, Nukleinsäuren, Kohlenhydrate) zu reinigen, nachzuweisen und zu quantifizieren; Reinigungs-, Analyse- und Quantifizierungsmethoden zu entwickeln und zu validieren und Einflüsse auf die Stabilität von Makromolekülen zu analysieren.

Inhalte

a) Immunanalytik: (ieweils mit Durchführung, Auswertung, Anwendungsbeisp.) Immunoassays: EIA u. ELISA (Assay-Prinzipien, Homo- u. heterogene Assays, wichtige Parameter: Beschichtungskonzen., Block- u. Waschreagenzien, Konjugatkonzentr., Amplifikationssysteme); *Elektrophoret. Analytik:* Native PAGE, SDS-PAGE, IF; Trägerampholyte, Immobiline: Unterschiede 2D-Elektrophorese; 2D-Fluoreszenzdifferenz-GE; Elektroblotting: Semidry-, Tank-Blotting; Kohlenhydratanalytik (Bedeut. der Glykosylierung bei Proteinwirkstoffen, Glyo Engineering; Proteinglykosylierung im ER u. GOLGI-Apparat; Aufbau N-Glykane (Komplex-, Hybrid-, High Mannose-Typ), Aufbau O-Glykane (core-Strukturen); Nachweis Glykosylierung (Gykandetektion, Lektinblotting), HPAEC-PAD: Mapping nativer u. neutraler N-Glykane, Bedeutung der Sialylierung (Z-Zahl) hinsichtl. Pharmakokinetik; MALDI-TOF: Nachweis glykosyl. Peptide, Nachweis "glycated" proteins; Einfluss Glykosylierungsmuster auf biol. Aktivität); Immunfluoreszenz u. Flowzytometrie (Prinzip; konfokale Laserscanmikroskopie; Auswahl Fluoreszenzfarbstoffe; Chrom. Analytik: Kenngrößen; Gelfiltration: Interpret, bei Fragmentierung u. Aggregation von Proteinwirkstoffen; Kationenaustauschchromat.: Interpret, Ladungsheterogenitäten von Proteinwirkstoffen; HIC: Interpret. oxidat. Degradation von Proteinwirkstoffen; RP-Chromatograf.: Interpret. bei deamidierten Proteinwirkstoffen, Peptide mapping; Affinitätschromat.: Interpret.; Biacore-Technik: Oberflächen Plasmon-Resonanz-Phänomen, Fkts.weise; Interpret.; FT-IR-Spektroskopie: Fkts.weise, Differenzspektren, Schmelzkurven u. -punkte; Interpret. bei Veränderung von Sekundärstrukturen von Proteinwirkstoffen b) Bioanalytik-Praktikum: Entw. U. Validierung eines Immunoassays (Sandwich-ELISA); Best, opt. Fangantikörperkonzentration u. geeigneter Beschichtungspuffer; Erst. von Standardkurven, Best. einer geeigneten Nachweisantikörperkonjugat-Verdünnung, Validierung des entwickelten ELISA

c) *Qualitätskontrolle*: Formulierung von Proteinarzneimitteln, Ermitteln von Spezifikationen für die Qualitätskontrolle und Stabilitätsuntersuchung von Proteinarzneimitteln, Auswahl von Analysenmethoden, Validierung von Methoden

Lehrformen

a), c) seminaristischer Unterricht, Projektarbeiten, Gruppenarbeiten, Übungen; b) Laborpraktikum

Teilnahmevoraussetzungen

Formal: keine

Inhaltlich: Biophysik und Analytik.

Prüfungsformen, Notenbildung

a) Teilklausur (65%); b) Teilklausur (35%); c) Protokolle (0%)

Voraussetzungen für die Vergabe von Kreditpunkten

Jeweils bestandene Klausuren, Teilnahme am Praktikum und bestandene Protokolle

Verwendung des Moduls (in anderen Studiengängen)

keine

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Hebenbrock / Prof. Dr. Schauder, Prof. Dr. Hebenbrock

Literatur

EP. Diamandis, TK. Christopoulos: Immunoassay, Academic Press (1996); Informa Life Sciences, Basel (2006): Post-Translational Modifications; F.Lottspeich, J.W. Engels: Bioanalytik, Spektrum Akad. Verlag, Heidelberg

Sonstige Informationen

Anwesenheitspflicht im Laborpraktikum. Anerkennung von Versuchen bei Vorlage geeigneter Nachweise möglich.

Ker	nnummer	Workload	Credits	Studiensem	ester	Häufigk	eit des Angebots	Dauer			
	F&E	156 h	6	5. Sem.		jewe	ils 1x pro Jahr	1 Semester			
1	Lehrverans a) Seminar	_				taktzeit	Selbststudium 36 h	geplante Gruppengröße			
	,	geleiteter Praxisb	ericht) Std.	30 11	40 Studierende			
2	Lernergebr	nisse (learning o	utcomes) / K	ompetenzen							
	recherche n wissenscha	nittels elektroniscl ftlichen Fachartik Fachreferaten und	ner Datenbanl eln, Auswerte	ken und klassison n und Bewerten	her Bil experi	bliotheksa menteller '	sondere Literatur- ur rbeit, Anfertigen von Versuchsergebnisse ndlung von Fragen u	e, Erstellen und			
3	Inhalte										
	sich in mode eigenen Re	erierter Fachdisku	ssion mit den ung werden d	Referenten aus lie zuvor vermitt	seinand	der. Durch	nd Entwicklung kenn Ausarbeitung und H nstechniken am wis	lalten eines			
4	Lehrformer	1									
	Vorträge, Ü	bungen, wiss. ang	geleiteter Prax	isbericht							
5	Teilnahme	/oraussetzungei	1								
	Formal: kei	ne									
	Inhaltlich:	Module des Gru	ndstudiums								
6	Prüfungsfo	rmen									
	Präsentation	n, wissenschaftlic	her Bericht,								
7	Voraussetz	ungen für die Vo	ergabe von K	reditpunkten							
	Bewertete F	Präsentation und v	vissenschaftli	cher Bericht, Te	ilnahm	e an ≥ 80	% der Veranstaltun	gen			
8	Verwendur	ıg des Moduls (ir	n anderen Stu	diengängen)							
	Das Modul v	wird auch für den	Studiengang	Chemical Engir	eering	angebote	n.				
9	Stellenwert	der Note für die	Endnote								
	Gewichtung entsprechend der CrPs										
10	Modulbeauftragte/r und hauptamtlich Lehrende										
	Prof. Dr. R. Ehret / Prof. Dr. R. Ehret, Prof. Dr. K. Hebenbrock, Prof. Dr. W. Schiebler										
11	Sonstige In	formationen									
	-										
42	Literatur										
12	Littiatui										

Physiolog	Physiologie und Pharmakologie, Zellbiologie 2										
Kennnummer Workload Credits Studiensemester Häufigkeit des Angebots Dauer											
PuP	234 h	9	5	5.+6. Sem.	1 mal jährlich		2 Semester				
Lehrveranstaltu	ıngen		•	Kontaktzeit	Selbststudium		Geplante				
a) Physiologie				30 h	48 h	9	Gruppengröße				
b) Pharmakologie				40 h	38 h	2	25 Studierende				
c) Zellbiologie 2				40 h	38 h						

Die Studierenden sind in der Lage, pathologische von nicht pathologischen Stoffwechselvorgängen zu unterscheiden; aufgrund der Prinzipien der Aufnahme, Verteilung, Verstoffwechslung und Ausscheidung von Wirkstoffen abzuschätzen, was mit einem Wirkstoff im Körper geschieht; Möglichkeiten und Grenzen der Verwendung von Modellorganismen zu benennen; Chancen und Risiken moderner Ansätze der Wirkstofffindung unter naturwissenschaftlichen, ökonomischen und ethischen Aspekten zu diskutieren.

Inhalte

- a) Physiologie: Funktionen des zentralen und peripheren Nervensystems; Aufbau und Funktionen des Herz-Kreislaufsystems unter Einschluss der Erregungsphysiologie des Herzens (EKG); Morphologie und Funktionen des Magens, der Leber, des Pankreas, des Darms, der Nieren und Nebennieren; Atmungsregulation; Funktionen des Blutes und Grundzüge des Immunsystems; Anatomie und Physiologie von Auge und Ohr; Fortpflanzungsorgane und deren Funktion; Schwangerschaft.
- b) Pharmakologie: Arzneimittelentwicklung, Pharmakokinetik, Allgemeine Pharmakologie, Wirkprinzipien und therapeutischer Einsatz ausgewählter Arzneimittel.
- c) Zellbiologie 2: Interaktion von Geweben und Organen, Hormonwirkung. Grundlagen der Immunologie: Anatomie des Immunsystems: Zentrale lymphatische Organe (Knochenmark, Thymus), periphere lymphatische Organe (Lymphknoten, Milz, mucosale lymphatische Organe); Angeborene Immunität: mechanisch-chemische Abwehrmechanismen, Pathogen-assoziierte molekulare Muster, Mustererkennungsrezeptoren, Zytokine, Chemokine, Effektormechanismen gegen intra-und extrazelluläre Erreger, Aktivierung des Komplementsystems; Adaptive Immunität: molekularer Aufbau der Antikörperklassen, ADCC-Reaktion, Komplement vermittelte Zytolyse, humorale Immunität, molekularer Aufbau des T-Zellrezeptors und der MHC-Moleküle, Effektormechanismen von aktivierten T-Zellen, zellvermittelte Immunität; Entwicklung und Differenzierung von Zellen; Tierische und pflanzliche Modellorganismen wie Drosphila, Caenorhabditis elegans, Arabidopsis, Hefe, Maus; Herstellung, Einsatz und Grenzen gentechnisch veränderter Tiere; Diskussionsrunden zu aktuellen ethischen Themen.

Lehrformen

Seminaristischer Unterricht, Gruppenarbeiten

Teilnahmevoraussetzungen

Formal: gemäß der Ausführungsbestimmungen der Studien- und Prüfungsordnung in der aktuellen Fassung **Inhaltlich**: Zellbiologie, Biochemie, Biophysik/Analytik

Prüfungsformen, Notenbildung

a + b) Klausur (67%); c) Präsentation (33%)

Voraussetzungen für die Vergabe von Kreditpunkten

Jeweils bestandene Teilleistungen

Verwendung des Moduls (in anderen Studiengängen)

keine

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Schauder / Prof. Dr. Hebenbrock, Prof. Dr. Schauder, Prof. Dr. Schiebler

Literatur

Tortora/Derrickson: Anatomie und Physiologie, WILEY-VCH, Weinheim; Mutschler Arzneimittelwirkungen 10. Auflage, Wissenschaftliche Verlagsgesellschaft, Stuttgart; Aktuelle fachbezogene Artikel

Information	Informationstechnologie und Datenbanken, Vertiefungskurs 2									
Kennnummer IVDM	Workload 156 h	Credits 6	Studien- semester	Häufigkeit des Angebots	Dauer					
			6. Sem.	1mal jährlich	1 Semester					
Lehrveranstaltunger	n		Kontaktzeit	Selbst-studium	Geplante					
a) Informationstechi	nologie und Datent	oanken		38 h	Gruppengröße					
b) Vertiefungskurs I	l		40 h	38 h	25 Studierende					
			40 h							

Nach dem Studium des Moduls sind die Studierenden in der Lage,

- a) Wissenschaftliche Datenbanken zu nutzen

 Zusammen mit Informatikern neue Datenbanken und Programmierungen zu entwickeln
- b) siehe Beschreibungen am Ende des Modulhandbuchs

Inhalte

- a) Allgemeine Grundlagen der IT, Grundlagen der Programmiersprachen, Objektorientierte Programmierung, Entwicklung einfacher Algorithmen, Aufbau einer relationalen Datenbank, Online-Publikationen und Recherche z.B. via PubMed, Einblick in bioinformatische Tools und biologische Datenbanken wie UniProtKB, PDB, etc.
- b) siehe Beschreibungen am Ende des Modulhandbuchs

Lehrformen

seminaristischer Unterricht, Gruppenarbeiten, Übungen

Teilnahmevoraussetzungen

Formal: keine Inhaltlich: keine

Prüfungsformen, Notenbildung

Teilklausuren (je 50 %) oder Präsentationen

Voraussetzungen für die Vergabe von Kreditpunkten

Bestandene Teilklausuren bzw. Präsentationen

Verwendung des Moduls (in anderen Studiengängen)

Datenbanken: Verwendung im Studiengang Chemical Engineering keine

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Schauder / Prof. Dr. Schauder, Prof. Dr. Hebenbrock

Literatur

Rainer Merkl, Stephan Waack "Bioinformatik Interaktiv", Wiley-Blackwell, 2013

Sonstige Informationen keine

Betriebsfül	nrung 2					
Kennnummer	Workload	Credits	Studien- semester	Häufigkeit des Angebots	•	
BF 2	234 h	9	6. Sem.	1 mal jährlich		1 Semester
Lehrveranstaltungen		Kontaktzeit	Selbst- studium		plante uppengröße	
a) Seminar zur Be	triebsführung		30 h	48 h	40	Studierende
b) Operations- und	d Unternehmensr	nanagement				
c) Austauschprojekt oder BP- Wettbewerb		30 h	48 h			
				78 h		

Die Studierenden sind in der Lage, anwendungsbezogene Kenntnisse über die wesentlichen Verantwortungsbereiche in forschenden und produzierenden biotechnischen Einheiten auf die eigenen Aufgabenstellungen zu übertragen; bei der Erstellung und Umsetzung von Geschäftsplänen, Szenarien, Wettbewerbsanalysen und bei der Entscheidungsfindung zu unterschiedlichen Optionen mitzuwirken; Bei Entscheidungen rechtliche, ökonomische, gesellschaftspolitische und ethische Aspekte gegeneinander abzuwägen

Inhalte

a) Überwachung betrieblicher Abläufe, Verantwortlichkeiten des Betriebsführers / Laborleiters und Haftung, betrieblicher Umweltschutz (fest, flüssig, gasförmig), Gewährleistung der Betriebs- und Anlagensicherheit, Behördenmanagement, Genehmigungsverfahren, Produktionskostenrechnung in SAP, Personalmanagement im Produktionsbetrieb, Arbeitsrechtliche Fragestellungen, Instandhaltungskonzepte, Verbesserungswesen/ 6 Sigma b) strategische Planung u. Planungsinstrumente, Markt- und Wettbewerbsanalyse unter prozesstechn. Gesichtspunkten, Industriekosten, Portfoliomethoden, SWOT-Analyse: Business-, Finanz- und Personalplanung

Gesichtspunkten, Industriekosten, Portfoliomethoden, SWOT-Analyse; Business-, Finanz- und Personalplanung, Organisation der Unternehmensprozesse, Ideenfindung und -analyse, Kreativitätstechniken, Erstellung eines Businessplans

Lehrformen

seminaristischer Unterricht, Projektarbeiten, Gruppenarbeiten.

Teilnahmevoraussetzungen

Formal: keine

Inhaltlich: Betriebsführung 1

Prüfungsformen, Notenbildung

a) Klausur (30%); b) Businessplan (50%), Präsentation (20%)

Voraussetzungen für die Vergabe von Kreditpunkten

Jeweils bestandene Prüfungsleistungen

Verwendung des Moduls (in anderen Studiengängen)

Teile des Moduls werden zusammen mit den Bachelorstudiengängen Chemical Engineering, Business Management und Business Information Management durchgeführt.

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Ehret / Prof. Dr. Ehret, Prof. Dr. May

Literatur

"Planen, gründen, wachsen – mit dem professionellen Businessplan zum Erfolg", Alexandru Cristea, Redline Verlag, 7. Auflage.

Sonstige Informationen

Das Austauschprogramm und der Businessplanwettbewerb erfolgen studiengangsübergreifend

Bioverfahre	enstechni	k				
Kennnummer	Workload	Credits	Studiensemester	Häufigkeit des An	Dauer	
BVT	182 h	7	6. Sem.	1 mal jährlich	1 Semester	
Lehrveranstaltun	gen	1	Kontaktzeit	Selbststudium	Geplai	
a) Bioverfahrenstechnik			40 h	38 h	Grupp	engröße
b) Praktikum Bioverfahrenstechnik			104 h		25 Stu	dierende

Die Studierenden sind in der Lage, Verfahren zur Vermehrung unterschiedlicher Mikroorganismen auszuwählen; Mikroorganismen vom Saatgut bis zu großvolumigen Fermentern zu vermehren; Produkte aus der Fermentation zu isolieren und zu reinigen; Fermentationsprozesse zu optimieren; die Qualitätskontrolle der Fermentation und der Reinigung zu planen und durchzuführen.

Inhalte

- a) Rohstoffe und Rohstoffvorbereitung, Impfgutherstellung, Impfkette, Sterilisation von Rohstoffen, Apparaturen, gasförmigen und flüssigen Medien, Sterilkontrolle; Typen von Biorektoren, Einsatzgebiete, Layout Kriterien, Scale up, Steuerung und Fahrweisen von Bioprozessen, in Process Kontrolle, Biosensoren, Aufbau und Einsatzgebiete; Aufarbeitung: Trennverfahren fest-flüssig, Eignung verschiedener Verfahren für spezifische Anwendungen; Reinigung und Feinreinigung, Stabilisierung und Konfektionierung von Biopharmaceuticals; Verfahrensbeispiele; Exkursion mit Betriebsbesichtigung
- b) Vermehrung eines Mikroorganismus unter aeroben und / oder aneroben Bedingungen, Ermittlung der Wachstumsparameter; Methoden der Zellernte und des Zellaufschlusses; Ermittlung des Stoffübergangskoeffizienten; Ermittlung des Energieeintrags verschiedener Rührer.

Lehrformen

seminaristischer Unterricht, Gruppenarbeiten, Exkursionen, Praktikum

Teilnahmevoraussetzungen

Formal: keine

Inhaltlich: Industrielle Mikrobiologie und Zellkultur

Prüfungsformen, Notenbildung

Klausur (100%); Protokolle (0%)

Voraussetzungen für die Vergabe von Kreditpunkten

Bestandene Klausur, Teilnahme am Praktikum und bestandene Versuchsprotokolle

Verwendung des Moduls (in anderen Studiengängen)

keine

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Bayer / Prof. Dr. Bayer, Prof. Dr. Schauder

Literatur

Biotechnologie * Thieman, W.J. & Palladino, M.A. * (2007) * Pearson Studium; Biotechnologie für Einsteiger * Renneberg, Reinhard * (2006) * Elsvier-Spektrum; Enzymes in Industry * Aehle, W. * (2004) * WILEY-VCH Verlag; Fundamentals of Biotechnology * Präve, P. * WILEY-VCH Verlag; Leitfaden für die Zell- und Gewebekultur * Boxberger, H.J. * (2007) * WILEY-VCH Verlag; Membranes for Life Sciences * Peinemann, K.V. * (2008) * WILEY-VCH Verlag; Molekulare Biotechnologie * Wink, Michael * (2004) * WILEY-VCH Verlag; Taschenatlas der Biotechnologie und Gentechnik * Schmidt, Rolf D. * (2002) * WILEY-VCH Verlag; Bioprozesstechnik * Chmiel, Horst * (2012) * Spektrum Verlag; Bioreaktoren und periphere Einrichtungen * Storhas, Winfried * (2000) * Vieweg Verlag

Sonstige Informationen

Abschluss	praktikum						
Kennnummer	Workload	Credits	Studien- semester		Häufigkeit des Angebots		Dauer
AP	130 h	5	7. Sem.	1	mal jährlich		1 Semester
Lehrveranstaltungen		Kontaktzeit	•	Selbst- studium		plante uppengröße	
Abschlusspraktikum		130 h			25	Studierende	

Nach dem Studium des Moduls sind die Studierenden in der Lage.

für die wissenschaftliche Gemeinschaft praktische Untersuchungen, Versuche und Experimente in Eigenregie

- zu konzipieren, durchzuführen und auszuwerten,
- sowie aus den Ergebnissen wissenschaftlich fundierte Schlüsse zu ziehen und abzuleiten.
- Diese Ergebnisse schlüssig in Wort und Schrift darzustellen

Inhalte

Vorrecherche zum Stand der Technik und wissenschaftlichen Grundlagen zu einem vom betreuenden Hochschullehrer vorgegebenen aktuellen pharmazeutisch-biologischen Thema Selbstständiges Erstellen einer Versuchskonzeption mit Versuchsaufbau und Versuchsplan, ggf. incl. statistischer Methoden,

Versuchsdurchführung, Erfassung und Auswertung von Versuchsdaten Erarbeiten von Schlussfolgerungen Anfertigung eines Praktikumsberichts unter Anwendung international gebräuchlicher Publikations- und Zitationsmethodik

Lehrformen

Laborpraktikum, Seminar

Teilnahmevoraussetzungen

Formal: keine

Inhaltlich: Teilnahme an allen für das Thema der Bachelorarbeit relevanten Module

Prüfungsformen, Notenbildung

Bericht über das Praktikum (100%)

Voraussetzungen für die Vergabe von Kreditpunkten

Bestandener Praktikumsbericht

Verwendung des Moduls (in anderen Studiengängen)

keine

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Schauder / Prof. Dr. Hebenbrock, Prof. Dr. Schiebler, Prof. Dr. Bayer, Prof. Dr. Schauder

Literatur: Versuchsbezogene Fachliteratur

Sonstige Informationen: keine

Anfertigen	der Bache	lor-Thes	sis				
Kennnummer	Workload	Credits	Studien- semester		läufigkeit des Angebots		Dauer
ВТ	390 h	15	7. Sem.	1	mal jährlich		1 Semester
Lehrveranstaltun	_ehrv eranstaltungen		Kontaktzeit	•	Selbst- studium		plante uppengröße
a) Anfertigung der Bachelorarbeit b) Verteidigung der Bachelorarbeit				312 h 78 h	1 S	tudierende(r)	

Nach dem Studium des Moduls sind die Studierenden in der Lage.

in einem vorgegebenen Zeitraum eine Problemstellung des Fachs, die in Zusammenhang mit dem Berufsumfeld ihres bzw. seines Bachelor-Projekts stehen soll, mit wissenschaftlichen Methoden und Erkenntnissen des Fachs zu lösen

Inhalte

Recherche zum Stand der Technik und wissenschaftlichen aktuellen pharmazeutisch-biologischen Thema Selbstständiges Erstellen einer Versuchskonzeption mit Versuchsaufbau und Versuchsplan, ggf. incl. statistischer Methoden, Versuchsdurchführung, Erfassung und Auswertung von Versuchsdaten Erarbeiten von Schlussfolgerungen Anfertigung einer Bachelorarbeit unter Anwendung international gebräuchlicher Publikations- und Zitationsmethodik

Lehrformen

Projektarbeit

Teilnahmevoraussetzungen

Formal: gemäß Ausführungsbestimmungen der Studien- und Prüfungsordnung in der aktuellen Fassung **Inhaltlich**: Teilnahme an allen für das Thema der Bachelorarbeit relevanten Module

Prüfungsformen, Notenbildung

- a) Bachelorthesis (80%)
- b) Präsentation (20%)

Voraussetzungen für die Vergabe von Kreditpunkten

Bestandene Bachelorarbeit und bestandene Präsentation

Verwendung des Moduls (in anderen Studiengängen)

keine

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Schauder

Prof. Dr. Hebenbrock, Prof. Dr. Schiebler, Prof. Dr. Bayer, Prof. Dr. Schauder

Literatur

Deutsche und englische Fachliteratur zu den ausgewählten Themen

Sonstige Informationen: keine

Vertiefung	Strategien	der Wir	kstofffindu	ng			
Kennnummer	Workload	Credits	Studien- semester	Häufigkeit des Angebots			Dauer
VM-SWF	78 h	3	4./6. Sem.	В	ei Bedarf		1 Semester
Lehrveranstaltungen		Kontaktzeit		Selbst- studium		olante Ippengröße	
Strategien der Wirkstofffindung		40 h		38 h	15	Studierende	

Nach dem Studium des Moduls sind die Studierenden in der Lage,

- Strategien der präklinischen Forschung und Entwicklung eines Proteinwirkstoffs in zeitlich definierten Zeiträumen zu entwickeln
- Maßnahmen zu ergreifen, um die biologische Sicherheit des Proteinwirkstoffs sicherzustellen

Inhalte

Generischer Plan (präklinische Entwicklung) zur Entwicklung eines krebstherapeutischen Antikörpers: Business Development, Marketing; Identifizierung /Validierung von Zielstrukturen; Herstellung eines murinen, monoklonalen Antikörpers; Herstellung eines chimären, humanisierten oder humanen Antikörpers; Herstellung einer Forschungszellbank; Prozessentwicklung: Masterzellbank, Upstream-und Downstreamprozess; Wirkstoffversorgung: certified batch, GMP-Batch; Toxikologie, Pharmazeutische Entwicklung, Analytik, Stabilität; Behördendokumente: IND, IMPD, BLA; Comparability-Studies; Biologische Sicherheit: Virussicherheit, Bedeutung und experimenteller Nachweis; Bioburden, Sterilität, Pyrogene; Bedeutung und experimenteller Nachweis; BSE-Riskoabschätzung

Lehrformen

Seminaristischer Unterricht

Teilnahmevoraussetzungen

Formal: gemäß der Ausführungsbestimmungen der Studien- und Prüfungsordnung in der aktuellen Fassung

Inhaltlich: keine

Prüfungsformen, Notenbildung

Klausur oder Präsentation (100%)

Voraussetzungen für die Vergabe von Kreditpunkten

Bestandene Klausur / Präsentation

Verwendung des Moduls (in anderen Studiengängen)

keine

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Schauder / Prof. Dr. Schiebler, Prof. Dr. Hebenbrock

Literatur

Aktuelle Veröffentlichungen

Sonstige Informationen

Vertiefung	Immunolo	gie					
Kennnummer Workload Credits				Häufigkeit des Angebots		Dauer	
VM-IMM	78 h	3	4./6. Sem.	В	ei Bedarf		1 Semester
Lehrveranstaltun	Lehrveranstaltungen		Kontaktzeit	ı	Selbst- studium		plante uppengröße
Immunologie		40 h		38 h	15	Studierende	

Die Studierenden sind in der Lage, Impfstrategien mit ihren Vor- und Nachteilen zu bewerten; die Zusammensetzung, die Herstellung und die Applikation verschiedener viraler und bakterieller Impfstoffe, sowie ihre Wirkung auf das Immunsystem darzulegen; In der Gesellschaft zu den Themen Impfschäden, Impfkomplikationen und Impfungen unter besonderen Umständen Auskunft zu geben

Inhalte

Grundlagen der Vakzinologie; Passive Immunisierung; Aktive Immunisierung: Totimpfstoffe, Subunitvakzinen, Peptidimpfstoffe, attenuierte Lebendimpfstoffe, DNA-Impfstoffe, Markervakzinen; Adjuvanzien und Applikationsarten; Therapeutische Impfung; Tumorimmunologie; Autologe Tumorvakzinen; Immunität und Schutzimpfung: Entstehung einer humoralen Immunantwort nach Vakzination; Nachweis einer humoralen Immunität; Entstehung einer zellvermittelten Immunität; Entstehung einer zellvermittelten Immunität; Innovative Methoden zur Auffindung neuer protektiver Antigene: Reverse Impfstoffentwicklung; Differentielle Fluoreszenzinduktion; In vivo-induzierte Antigentechnologie; Grippeimpfstoffe: Influenzaviren: Aufbau, Pathogenese, Immunogenität (Antigendrift und Antigenshift); Totimpfstoffe, Lebendimpfstoffe: Zusammensetzung, Applikation, Wirksamkeit; Impfprophylaxe für Reisen in die Tropen und Subtropen: Gelbfiebervakzine: Aufbau des Virus, Pathogenese, Lebendimpfstoff, Wirksamkeit; Choleravakzine: Erreger, Aufbau des Toxins, Pathogenese, Totimpfstoffe, Wirksamkeit; Hepatitis A und Hepatitis B-Vakzinen: Aufbau der Viren, Pathogenese, Totimpfstoffe; passive Immunisierung, Immunschutz; Tollwutvakzine: Erreger, Pathogenese, Totimpfstoffe, passive Immunisierung, Immunschutz; Ansätze zur Entwicklung einer Ebolavakzine; Typhusvakzine: Erreger, Pathogenese, Totimpfstoffe, Lebendimpfstoffe, Immunschutz; Impfschäden, Impfkomplikationen und Impfungen unter besonderen Umständen: Impffähigkeit; Impfreaktionen: Allergien; Komplikationen: Immundefekte, Transplantation, Schwangerschaft

Lehrformen

Seminar, Gruppenarbeiten

Teilnahmevoraussetzungen

Formal: gemäß der Ausführungsbestimmungen der Studien- und Prüfungsordnung in der aktuell gültigen Fassung

Inhaltlich: keine

Prüfungsformen, Notenbildung

Klausur oder Präsentation (100%)

Voraussetzungen für die Vergabe von Kreditpunkten

Bestandene Klausur / Präsentation

Verwendung des Moduls (in anderen Studiengängen)

keine

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Schauder / Prof. Dr. Schiebler, Prof. Dr. Schauder

Literatur

Aktuelle Veröffentlichungen

Sonstige Informationen

Vertiefung	Toxikologi	ie					
Kennnummer	Workload	Credits	Studien- semester		Häufigkeit des Angebots		Dauer
VM-TOX	78 h	3	4./6. Sem.	E	Bei Bedarf		1 Semester
Lehrveranstaltungen		Kontaktzeit	•	Selbst- studium	·	plante uppengröße	
Toxikologie		40 h		38 h	15	Studierende	

Nach dem Studium des Moduls sind die Studierenden in der Lage,

- die Wirkungen von Substanzen auf lebende Organismen und das Ökosystem abzuschätzen
- toxikologische Studien zu entwickeln und zu bewerten.

Inhalte

Allgemeine Toxikologie (Gefahrstoffe, Einordnung, Kennzeichnung; Toxikokinetik; toxikologische Untersuchungsmethoden); Spezielle Toxikologie (Darstellung ausgewählter Toxine und deren Wirkungsweise); Organtoxikologie; chemische Kanzerogenese.

Lehrformen

seminaristischer Unterricht, Gruppenarbeiten

Teilnahmevoraussetzungen

Formal: gemäß der Ausführungsbestimmungen der Studien- und Prüfungsordnung in der aktuellen Fassung

Inhaltlich: keine

Prüfungsformen, Notenbildung

Klausur (100%)

Voraussetzungen für die Vergabe von Kreditpunkten

Bestandene Klausur

Verwendung des Moduls (in anderen Studiengängen)

Die Toxikologie baut auf den Modulen der "Biochemie" und "Zellbiologie" sowie der "Genetik" auf und gibt vorausschauende Einblicke in das Modul "Pharmakologie".

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Schauder / Prof. Dr. Hebenbrock, Prof. Dr. Schauder

Literatur

Aktuelle Veröffentlichungen

Sonstige Informationen:

Vertiefung	Neurobiol	ogie					
Kennnummer	Workload 78 h	Credits	Studien- semester		läufigkeit des Angebots		Dauer
VM-NRB		3	4./6. Sem.	Е	Bei Bedarf		1 Semester
Lehrveranstaltungen		Kontaktzeit	I	Selbst- studium	-	olante Ippengröße	
Neurobiologie			40 h		38 h	15	Studierende

Die Studierenden sind in der Lage, den Aufbau, die Funktionen und Krankheiten des Nervensystems zu erläutern; Methoden der experimentellen Neurobiologie zu bewerten; Die Auswirkung neurodegenerativer Krankheiten auf die Gesellschaft kompetent zu diskutieren

Inhalte

Aufbau des Nervensystems, Neurotransmitter und Neurotransmission, Mechanismen von Lernen und Gedächtnis, Methoden der experimentellen Neurobiologie, exemplarische Betrachtung psychiatrischer- und neurodegenerativer Erkrankungen.

Lehrformen

seminaristischer Unterricht, Gruppenarbeiten.

Teilnahmevoraussetzungen

Formal: gemäß der Ausführungsbestimmungen der Studien- und Prüfungsordnung in der aktuellen Fassung

Inhaltlich: keine

Prüfungsformen, Notenbildung

Präsentation (100%)

Voraussetzungen für die Vergabe von Kreditpunkten

Präsentation

Verwendung des Moduls (in anderen Studiengängen)

keine

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Schauder / Prof. Dr. Schiebler

Literatur

Aktuelle Veröffentlichungen

Sonstige Informationen

Vertiefung I	-lämostas	е					
Kennnummer	Workload	Credits	Studien- Häufigkeit des			Dauer	
	78 h		semester	Δ	Angebots		
VM-HST		3	4./6. Sem.	Е	Bei Bedarf		1 Semester
Lehrveranstaltungen		Kontaktzeit	Selbst- studium		Geplante Gruppengröße		
Hämostase			40 h		38 h	15 \$	Studierende

Die Studierenden sind in der Lage, die einzelnen Phasen der primären und sekundären Hämostase darzustellen; die verschiedenen Wege der Inhibitoren zu erklären; die für die Diagnostik wichtigen Methoden zu beschreiben und Routineparameter zu interpretieren

Inhalte

Im ersten Teil wird die Hämostase in ihren verschiedenen Phasen (primäre, sekundäre Phase und Fibrinolyse) dargestellt. Neben der den Funktionen der Thrombozyten wird der kaskadenartige Ablauf der plasmatischen Gerinnung als biochemischer Prozess (Enzymkinetik/Aktivierung und Inhibition) ausführlich behandelt. Hierbei werden die einzelnen Faktoren (Proteine/Enzyme) und deren Funktionen im Ablauf und der Regulation der Hämostase kennengelernt.

Im folgenden Teil werden im Rahmen der Diagnostik die wichtigsten Gerinnungsstörungen, wie z.B. die Hämophilie, Thrombophilie und Koagulopathien vorgestellt. Hierbei kommen auch die Aspekte der Substitutionstherapie mit Faktorkonzentraten zur Sprache.

Lehrformen

seminaristischer Unterricht, Projektarbeiten, Gruppenarbeiten, Präsentationen

Teilnahmevoraussetzungen

Formal: gemäß der Ausführungsbestimmungen der Studien- und Prüfungsordnung in der aktuellen Fassung **Inhaltlich:** Inhalte aus den Fächern Zellbiologie/Biochemie I – III, Genetik I und II

Prüfungsformen, Notenbildung

Präsentation mit schriftlicher Zusammenfassung (100%)

Voraussetzungen für die Vergabe von Kreditpunkten

Bestandene Präsentation und Bericht

Verwendung des Moduls (in anderen Studiengängen)

Keine

Stellenwert der Note für die Endnote

Gewichtung entsprechend der CPs

Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Schauder / Prof. Dr. Schauder

Literatur

Aktuelle Veröffentlichungen

Sonstige Informationen